AI搞定谷歌验证码,最新多模态大模型比GPT-4V空间理解更准确

CN
巴比特
关注
1年前

原文来源:量子位



图片来源:由无界 AI‌生成


谷歌人机验证已经拦不住AI了!


最新多模态大模型,能轻松找到图中所有交通信号灯,还准确圈出了具体位置。



表现直接超越GPT-4V。



这就是由苹果和哥伦比亚大学研究团队带来的多模态大模型“雪貂”(Ferret)



它具备更强的图文关联能力,提升了大模型在“看说答”任务中的精确度。


比如下图中非常细小的部件(region 1),它也可以分辨出来是避震。



GPT-4V没能回答正确,在细小部分上的表现不佳。



所以,Ferret是如何做到的呢?




“点一点”图像大模型都懂




Ferret解决的核心问题是让引用(referring)和定位(grounding)两方面空间理解能力更加紧密。


引用是指让模型准确理解给定区域的语义,也就是指一个位置它能知道是什么。


定位则是给出语义,让模型在图中找到对应目标。


对于人类来说,这两种能力是自然结合的,但是现有很多多模态大模型却只会单独使用引用和定位。



所以Ferret提出了一种新型的混合区域表示方法,能将离散坐标和连续特征联合起来表示图像中的区域


这样一来,模型就能分辨出边界框几乎一样的对象。


比如下图中两个物体的情况,如果只用离散边界框,模型会感到很“困惑”。和连续的自由形状混合表示相结合,能很好解决这一问题。



为了提取多样化区域的连续特征,论文提出了一种空间感知的视觉采样器,能够处理不同形状之间的稀疏性差异。


因此,Ferret可以接受各种区域输入,如点、边界框和自由形状,并理解其语义。


在输出中,它可以根据文本自动生成每个定位对象的坐标。



为了实现这一目标,Ferret模型的架构包括图像编码器、空间感知的视觉采样器和语言模型(LLM)等组成部分。


Ferret结合了离散坐标和连续特征,形成了一种混合区域表示。


这种表示方法旨在解决表示各种形状和格式的区域的挑战,包括点、边界框和自由形状。


离散坐标中每个坐标都被量化为一个目标框的离散坐标,这种量化确保了模型对不同图像大小的鲁棒性。


而连续特征则由空间感知视觉采样器提取,它利用二进制掩码和特征图在ROI内随机采样点,并通过双线性插值获得特征。


这些特征经过一个由3D点云模型启发的空间感知模块处理后,被浓缩成一个单一的向量, 并映射到大型语言模型(LLM)进行下一步处理。



为了增强Ferret的能力,论文还创建了一个名为GRIT的数据集。


这个数据集包含1.1M个样本,涵盖了个体对象、对象之间的关系、特定区域的描述以及基于区域的复杂推理等四个主要类别。


GRIT数据集包括了从公共数据集转换而来的数据、通过ChatGPT和GPT-4生成的指令调整数据,并额外提供了95K个困难的负样本以提高模型的鲁棒性。



实验结果表明,该模型不仅在经典的引用和定位任务中表现出优越性能,而且在基于区域和需要定位的多模态对话中远远超过现有其他MLLM模型。



此外,研究还提出了Ferret-Bench,可以评估图像局部区域的引用/定位、语义、知识和推理能力。


Ferret模型在LLaVA-Bench和Ferret-Bench上进行评估,在所有任务中都表现出色,特别是在需要指代和视觉grounding的三个新任务上,Ferret的表现很出色。



而且在描述图像细节上有明显提升,幻觉有明显下降。





全华人团队




Ferret大模型由苹果AI/ML和哥伦比亚大学研究团队共同带来,全华人阵容。


有昊轩和张昊天为共同一作。


有昊轩现在为哥伦毕业大学计算机科学博士,毕业后将加入苹果AI/ML团队。2018年从西安电子科技大学本科毕业。


主要研究方向为视觉语言理解、文本-图像生成和视觉语言。



张昊天现在为苹果AI/ML团队视觉智能研究员。


在加入苹果之前,张昊天在华盛顿大学获得博士学位,本科毕业于上海交通大学。


他是GLIP/GLIPv2的主要作者之一,GLIP曾获得CVPR2022的Best Paper Award的提名。



此外团队成员还包括甘哲、王子瑞、曹亮亮、杨寅飞等前谷歌和微软的多位优秀的多模态大模型研究员。


论文地址:https://arxiv.org/abs/2310.07704


免责声明:本文章仅代表作者个人观点,不代表本平台的立场和观点。本文章仅供信息分享,不构成对任何人的任何投资建议。用户与作者之间的任何争议,与本平台无关。如网页中刊载的文章或图片涉及侵权,请提供相关的权利证明和身份证明发送邮件到support@aicoin.com,本平台相关工作人员将会进行核查。

ad
出入金首选欧易,注册立返20%
广告
分享至:
APP下载

X

Telegram

Facebook

Reddit

复制链接